Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Article En | MEDLINE | ID: mdl-38302992

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Carcinoma, Hepatocellular , Liver Neoplasms , Neoplastic Stem Cells , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Self Renewal/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , Neoplastic Stem Cells/pathology , Protein Biosynthesis , Ribosomes/metabolism , RNA
2.
Cell Stem Cell ; 30(8): 1072-1090.e10, 2023 08 03.
Article En | MEDLINE | ID: mdl-37541212

TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.


Dioxygenases , Leukemia, Myeloid, Acute , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/metabolism , Carcinogenesis/metabolism , Stem Cells/metabolism , Demethylation , Neoplastic Stem Cells/metabolism , Tetraspanins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism
3.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Article En | MEDLINE | ID: mdl-37379838

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


DNA Helicases , RNA Helicases , DNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA Helicases/metabolism , Stress Granules , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , GTP-Binding Proteins/metabolism , RNA, Messenger/metabolism , Cytoplasmic Granules/metabolism
4.
Front Oncol ; 13: 1087644, 2023.
Article En | MEDLINE | ID: mdl-36874096

Introduction: Colorectal cancer (CRC) remains a significant cause of cancer related mortality. Fat mass and obesity-associated protein (FTO) is a m6A mRNA demethylase that plays an oncogenic role in various malignancies. In this study we evaluated the role of FTO in CRC tumorigenesis. Methods: Cell proliferation assays were conducted in 6 CRC cell lines with the FTO inhibitor CS1 (50-3200 nM) (± 5-FU 5-80 mM) and after lentivirus mediated FTO knockdown. Cell cycle and apoptosis assays were conducted in HCT116 cells (24 h and 48 h, 290 nM CS1). Western blot and m6A dot plot assays were performed to assess CS1 inhibition of cell cycle proteins and FTO demethylase activity. Migration and invasion assays of shFTO cells and CS1 treated cells were performed. An in vivo heterotopic model of HCT116 cells treated with CS1 or with FTO knockdown cells was performed. RNA-seq was performed on shFTO cells to assess which molecular and metabolic pathways were impacted. RT-PCR was conducted on select genes down-regulated by FTO knockdown. Results: We found that the FTO inhibitor, CS1 suppressed CRC cell proliferation in 6 colorectal cancer cell lines and in the 5-Fluorouracil resistant cell line (HCT116-5FUR). CS1 induced cell cycle arrest in the G2/M phase by down regulation of CDC25C and promoted apoptosis of HCT116 cells. CS1 suppressed in vivo tumor growth in the HCT116 heterotopic model (p< 0.05). Lentivirus knockdown of FTO in HCT116 cells (shFTO) mitigated in vivo tumor proliferation and in vitro demethylase activity, cell growth, migration and invasion compared to shScr controls (p< 0.01). RNA-seq of shFTO cells compared to shScr demonstrated down-regulation of pathways related to oxidative phosphorylation, MYC and Akt/ mTOR signaling pathways. Discussion: Further work exploring the targeted pathways will elucidate precise downstream mechanisms that can potentially translate these findings to clinical trials.

5.
Sci Transl Med ; 15(689): eabq8513, 2023 03 29.
Article En | MEDLINE | ID: mdl-36989375

Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of CD72 and JCHAIN and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.


Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins , Animals , Mice , Proto-Oncogene Proteins/metabolism , Phosphorylation , Staurosporine , Signal Transduction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , DNA-Binding Proteins/metabolism
6.
Cell Stem Cell ; 30(1): 52-68.e13, 2023 01 05.
Article En | MEDLINE | ID: mdl-36608679

N6-methyladenosine (m6A), the most prevalent internal modification in mammalian mRNAs, is involved in many pathological processes. METTL16 is a recently identified m6A methyltransferase. However, its role in leukemia has yet to be investigated. Here, we show that METTL16 is a highly essential gene for the survival of acute myeloid leukemia (AML) cells via CRISPR-Cas9 screening and experimental validation. METTL16 is aberrantly overexpressed in human AML cells, especially in leukemia stem cells (LSCs) and leukemia-initiating cells (LICs). Genetic depletion of METTL16 dramatically suppresses AML initiation/development and maintenance and significantly attenuates LSC/LIC self-renewal, while moderately influencing normal hematopoiesis in mice. Mechanistically, METTL16 exerts its oncogenic role by promoting expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) and BCAT2 in an m6A-dependent manner and reprogramming BCAA metabolism in AML. Collectively, our results characterize the METTL16/m6A/BCAT1-2/BCAA axis in leukemogenesis and highlight the essential role of METTL16-mediated m6A epitranscriptome and BCAA metabolism reprograming in leukemogenesis and LSC/LIC maintenance.


Cell Self Renewal , Leukemia, Myeloid, Acute , Mice , Humans , Animals , Leukemia, Myeloid, Acute/pathology , Carcinogenesis/pathology , RNA, Messenger/metabolism , Amino Acids, Branched-Chain/genetics , Amino Acids, Branched-Chain/metabolism , Neoplastic Stem Cells/pathology , Mammals/metabolism , Transaminases/genetics , Transaminases/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
7.
Theranostics ; 12(13): 5727-5743, 2022.
Article En | MEDLINE | ID: mdl-35966596

RNA N6 -methyladenosine (m6A) modification and its regulators fine tune gene expression and contribute to tumorigenesis. This study aims to uncover the essential role and the underlying molecular mechanism(s) of the m6A reader YTHDC1 in promoting triple negative breast cancer (TNBC) metastasis. METHODS: In vitro and in vivo models were employed to determine the pathological function of YTHDC1 in TNBC metastasis. To identify bona fide YTHDC1 target RNAs, we conducted RNA-seq, m6A-seq, and RIP-seq, followed by integrative data analysis and validation assays. RESULTS: By analyzing The Cancer Genome Atlas (TCGA) dataset, we found that elevated expression of YTHDC1 is positively correlated with poor prognosis in breast cancer patients. Using a mammary fat pad mouse model of TNBC, YTHDC1 significantly promoted lung metastasis of TNBC cells. Through multiple transcriptome-wide sequencing and integrative data analysis, we revealed dysregulation of metastasis-related pathways following YTHDC1 depletion and identified SMAD3 as a bona fide YTHDC1 target RNA. Depletion of YTHDC1 caused nuclear retention of SMAD3 mRNA, leading to lower SMAD3 protein levels. Loss of YTHDC1 led to impaired TGF-ß-induced gene expression, leading to inhibition of epithelial-mesenchymal transition (EMT) and suppressed TNBC cell migration and invasion. SMAD3 overexpression was able to restore the response to TGF-ß in YTHDC1 depleted TNBC cells. Furthermore, we demonstrated that the oncogenic role of YTHDC1 is mediated through its recognition of m6A as m6A-binding defective mutants of YTHDC1 were unable to rescue the impaired cell migration and invasion of YTHDC1 knockout TNBC cells. CONCLUSIONS: We show that YTHDC1 plays a critical oncogenic role in TNBC metastasis through promoting the nuclear export and expression of SMAD3 to augment the TGF-ß signaling cascade. Overall, our study demonstrates that YTHDC1 is vital for TNBC progression by enhancing TNBC cell survival and TGF-ß-mediated EMT via SMAD3 to enable the formation of distant metastasis and highlights the therapeutic potential of targeting the YTHDC1/m6A/SMAD3 axis for TNBC treatment.


Triple Negative Breast Neoplasms , Animals , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Mice , Nerve Tissue Proteins/metabolism , RNA , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Transforming Growth Factor beta/metabolism , Triple Negative Breast Neoplasms/pathology
8.
Trends Cancer ; 8(7): 598-614, 2022 07.
Article En | MEDLINE | ID: mdl-35346615

N6-methyladenosine (m6A) is the most abundant internal modification in mRNA that affects RNA processing, stability, and translation. Discovered as the first RNA m6A demethylase, the fat mass and obesity-associated protein (FTO) is frequently dysregulated and plays important roles in various types of cancers. Targeting FTO holds promising therapeutic significance via suppressing tumor growth, potentiating immunotherapy, and attenuating drug resistance. Here, we review recent advances in our understanding of the functions and underlying molecular mechanisms of FTO in tumor development, cancer stem cell (CSC) self-renewal, microenvironment regulation, immunity, and metabolism and discuss the therapeutic potential of targeting FTO for cancer treatment.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Neoplasms , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/genetics , RNA/metabolism , RNA, Messenger/genetics , Tumor Microenvironment/genetics
9.
Nat Cell Biol ; 24(2): 205-216, 2022 02.
Article En | MEDLINE | ID: mdl-35145225

METTL16 has recently been identified as an RNA methyltransferase responsible for the deposition of N6-methyladenosine (m6A) in a few transcripts. Whether METTL16 methylates a large set of transcripts, similar to METTL3 and METTL14, remains unclear. Here we show that METTL16 exerts both methyltransferase activity-dependent and -independent functions in gene regulation. In the cell nucleus, METTL16 functions as an m6A writer to deposit m6A into hundreds of its specific messenger RNA targets. In the cytosol, METTL16 promotes translation in an m6A-independent manner. More specifically, METTL16 directly interacts with the eukaryotic initiation factors 3a and -b as well as ribosomal RNA through its Mtase domain, thereby facilitating the assembly of the translation-initiation complex and promoting the translation of over 4,000 mRNA transcripts. Moreover, we demonstrate that METTL16 is critical for the tumorigenesis of hepatocellular carcinoma. Collectively, our studies reveal previously unappreciated dual functions of METTL16 as an m6A writer and a translation-initiation facilitator, which together contribute to its essential function in tumorigenesis.


Adenosine/analogs & derivatives , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/enzymology , Liver Neoplasms/enzymology , Methyltransferases/metabolism , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Adenosine/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cytosol/enzymology , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Methyltransferases/genetics , Mice, Inbred NOD , Mice, SCID , RNA, Messenger/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Signal Transduction , Tumor Burden
10.
Mol Cell ; 81(5): 922-939.e9, 2021 03 04.
Article En | MEDLINE | ID: mdl-33434505

R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Antineoplastic Agents/pharmacology , Glutarates/pharmacology , Glycolysis/genetics , Lactate Dehydrogenases/genetics , Leukemia, Myeloid, Acute/drug therapy , Phosphofructokinase-1, Type C/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Glycolysis/drug effects , HEK293 Cells , Humans , K562 Cells , Lactate Dehydrogenases/antagonists & inhibitors , Lactate Dehydrogenases/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidative Phosphorylation/drug effects , Phosphofructokinase-1, Type C/antagonists & inhibitors , Phosphofructokinase-1, Type C/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Survival Analysis , Xenograft Model Antitumor Assays
11.
STAR Protoc ; 1(2)2020 09 18.
Article En | MEDLINE | ID: mdl-32995754

A combination of immunotherapy and chemotherapy strategies could strengthen antitumor effects. This protocol elucidates a robust method via co-culturing drug pre-treated acute myeloid leukemia cells with CD3+ T cells, derived from leukoreduction system chambers, for in vitro and in vivo study. We optimized several aspects of the procedures, including timing of drug treatment, quantification of tumor cells, and approach of combination of CD3+ T cells with drug treatment in vivo. This enables the readouts of the interplay between drugs and T cells. For complete details on the use and execution of this protocol, please refer to Su et al. (2020).


Coculture Techniques/methods , Immunotherapy, Adoptive/methods , Animals , Bone Marrow Transplantation/methods , Cytotoxicity, Immunologic/immunology , Heterografts , Humans , Immunotherapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Lymphocyte Count/methods , Mice , Pharmaceutical Preparations , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
12.
Cancer Cell ; 38(1): 79-96.e11, 2020 07 13.
Article En | MEDLINE | ID: mdl-32531268

Fat mass and obesity-associated protein (FTO), an RNA N6-methyladenosine (m6A) demethylase, plays oncogenic roles in various cancers, presenting an opportunity for the development of effective targeted therapeutics. Here, we report two potent small-molecule FTO inhibitors that exhibit strong anti-tumor effects in multiple types of cancers. We show that genetic depletion and pharmacological inhibition of FTO dramatically attenuate leukemia stem/initiating cell self-renewal and reprogram immune response by suppressing expression of immune checkpoint genes, especially LILRB4. FTO inhibition sensitizes leukemia cells to T cell cytotoxicity and overcomes hypomethylating agent-induced immune evasion. Our study demonstrates that FTO plays critical roles in cancer stem cell self-renewal and immune evasion and highlights the broad potential of targeting FTO for cancer therapy.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors , Cell Self Renewal/drug effects , Enzyme Inhibitors/pharmacology , Immune Evasion/drug effects , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Anthracenes/chemistry , Anthracenes/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immune Evasion/genetics , Leukemia/genetics , Leukemia/pathology , Leukemia/prevention & control , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Structure , Protein Binding/drug effects , Protein Domains , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , U937 Cells
13.
Int J Radiat Oncol Biol Phys ; 105(1): 124-131, 2019 09 01.
Article En | MEDLINE | ID: mdl-31075310

PURPOSE: To evaluate the evolution of radiation-induced brain stem injury (BSI) in patients with nasopharyngeal carcinoma (NPC) treated with intensity modulated radiation therapy (IMRT) and to identify the critical dosimetric predictors of BSI. METHODS AND MATERIALS: A total of 6288 NPC patients treated with IMRT between 2009 and 2015 were retrospectively reviewed. Among these 6288 patients, 24 had radiation-induced BSI, which manifested as edematous lesions and contrast-enhanced lesions (CLs) on magnetic resonance imaging. Latency, symptoms, and evolution of BSI were assessed. Critical dosimetric predictors of BSI were identified using a penalized regression model with performance evaluated by receiver operating characteristic curve analysis. RESULTS: Median BSI latency was 14.5 months (range, 7.6-37.5 months), and 9 out of 24 patients (37.5%) were clinically symptomatic. Edematous lesions and CLs were both present in all patients. Necrosis was significantly more common in larger CLs (P = .007). After median follow-up of 12.5 months, 13 out of 24 patients (54.2%) had complete remission, and 5 out of 24 patients (20.8%) had partial remission. Remission was unaffected by whether or not symptomatic treatment was given. Maximum point dose (Dmax) was identified as the critical predictor of BSI (area under the receiver operating curve = 0.898), with the optimal cutoff equivalent dose in 2-Gy fractions (D2) being 67.4 Gy (sensitivity = 0.833, 20 out of 24; specificity = 0.835, 5234 out of 6264). Patients with Dmax ≥67.4 Gy (D2) were significantly more likely to develop BSI (odds ratio = 25.29; 95% CI, 8.63-74.14; P < .001) than those with Dmax <67.4 Gy (D2). CONCLUSIONS: In patients with NPC treated with IMRT, BSI generally tends to improve over time. Dmax = 67.4 Gy (D2) appears to be the dose constraint for brain stem, potentially providing clinicians with greater choice and flexibility when balancing the tumor target coverage and brain stem protection. Further studies are needed to validate our findings.


Brain Stem/radiation effects , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/radiotherapy , Radiation Injuries/diagnostic imaging , Radiotherapy, Intensity-Modulated/adverse effects , Adult , Brain Stem/diagnostic imaging , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , ROC Curve , Radiometry , Radiotherapy Dosage , Retrospective Studies
14.
Oral Oncol ; 73: 97-104, 2017 10.
Article En | MEDLINE | ID: mdl-28939083

OBJECTIVES: To clarify the incidence of brainstem toxicity and perform a dose-volume analysis for the brainstem after long-term follow-up of a large cohort of nasopharyngeal carcinoma (NPC) patients who underwent intensity-modulated radiation therapy (IMRT). MATERIALS AND METHODS: All patients with NPC treated with IMRT at Sun Yat-sen University Cancer Center between April 2009 and March 2012 were retrospectively reviewed. A total of 1544 patients with follow-up >12months and detailed treatment plan data were included. Radiotherapy was administered using the simultaneous integrated boost technique in 2.0-2.48Gy per fractions/28-33 fractions. Brainstem necrosis was defined as lesions with high signal intensity on T2-weighted images and low signal intensity on T1-weighted images, with or without enhancement after administration of contrast in follow-up MRI. RESULTS: After median follow-up of 79.7months (range, 12.2-85.6months), 2/1544 (0.13%) patients developed brainstem necrosis after intervals of 12.3 and 18.5months. Actuarial incidence of brainstem necrosis was 0.07%, 0.13%, 0.13% and 0.13% after 1, 2, 3 and 5years, respectively. Overall, 384 (24.9%), 153 (9.9%), 67 (4.3%), 39 (2.5%), 78 (5.1%), and 114 (7.4%) patients had excessive doses of Dmax≥64Gy, D1cc>59Gy, D2cc>59Gy, aV50>5.9cc, aV55>2.7cc and aV60>0.9cc respectively, of whom only two developed brainstem necrosis. CONCLUSIONS: Brainstem necrosis is rare in NPC. The definitive criteria based on conventional radiotherapy cannot accurately predict the occurrence of brainstem necrosis after IMRT, thus more flexible definitive criteria with strict restrictions need to be defined.


Brain Stem/radiation effects , Nasopharyngeal Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/adverse effects , Adolescent , Adult , Aged , Brain Stem/diagnostic imaging , Brain Stem/pathology , Cohort Studies , Female , Humans , Incidence , Magnetic Resonance Imaging , Male , Middle Aged , Nasopharyngeal Neoplasms/diagnostic imaging , Necrosis , Radiotherapy Dosage , Young Adult
15.
Transl Oncol ; 10(5): 800-805, 2017 Oct.
Article En | MEDLINE | ID: mdl-28844018

BACKGROUND: The effectiveness of induction chemotherapy (IC) followed by concurrent chemoradiotherapy (CCRT) over CCRT alone in patients with locoregionally advanced nasopharyngeal carcinoma (NPC) and chronic hepatitis B infection in the intensity-modulated radiotherapy (IMRT) era is unknown. PATIENTS AND METHODS: A total of 249 patients with stage T1-2 N2-3 or T3-4 N1-3 NPC and chronic hepatitis B infection treated with IMRT were retrospectively reviewed. Propensity score matching (PSM) was employed to balance covariates; 140 patients were propensity-matched (1:1 basis). Survival outcomes in the IC+CCRT and CCRT groups were compared using the Kaplan-Meier method, log-rank test and Cox proportional hazards model. RESULTS: No significant survival differences were observed between IC+CCRT and CCRT (5-year overall survival, 88.3% vs. 82.2%; P=.484; disease-free survival, 73.9% vs. 75.2%; P=.643; distant metastasis-free survival, 84.1% vs. 85.1%; P=.781; and locoregional failure-free survival, 87.9% vs. 85.1%; P=.834). After adjusting for known prognostic factors in multivariate analysis, IC was not an independent prognostic factor for any outcome (all P>.05); subgroup analysis based on T category (T1-2/T3-4), N category (N0-1/N2-3), and overall stage (III/IV) confirmed these results. The incidence of hepatic function damage in the IC+CCRT and CCRT groups was not significantly different. CONCLUSION: IC+CCRT leads to comparable survival outcomes and hepatic function damage compared to CCRT alone in patients with locoregionally advanced NPC with chronic hepatitis B infection in the IMRT era. Further investigations are warranted.

16.
J Natl Compr Canc Netw ; 15(3): 336-344, 2017 03.
Article En | MEDLINE | ID: mdl-28275034

Background: Given the distinct biological characteristics and regional distribution of nasopharyngeal carcinoma (NPC) compared with other head and neck cancers, and uncertainties regarding therapeutic strategies, physicians require high-quality clinical practice guidelines (CPGs) to provide transparent recommendations for NPC treatment. This study aimed to critically appraise the quality of NPC CPGs and assess the consistency of their recommendations. Methods: We identified CPGs that provided recommendations on the diagnosis and management of NPC published up to December 2015. Four investigators independently appraised CPG quality using the Appraisal of Guidelines for Research & Evaluation (AGREE) II instrument. Key recommendations by CPGs were also evaluated. Results: A total of 7 CPGs were eligible for this study: 5 produced by professional organizations or governmental agencies and 2 were developed based on expert consensus. Of the 6 AGREE II domains, the applicability domain scored consistently low across CPGs (range, 13.5%-30.2%); no CPG achieved a score of >50% in all 6 domains. The scope and purpose domain (≥73.6% for 4 CPGs) and editorial independence domain (≥75.0% for 6 CPGs) scored highest. Of the 23 AGREE II items, 9 scored less than half of the points available in all 7 CPGs. The recommendations by CPGs were consistent in general; heterogeneity mainly existed among recommended therapeutic strategies. Conclusions: Variation exists in NPC CPG development processes and recommendations. Increased efforts are required to make comprehensive resources available to guide healthcare providers and enhance delivery of high-quality, evidence-based care for NPC. International collaboration is necessary to enable the development of high-quality and regionally relevant CPGs for NPC.


Carcinoma/diagnosis , Carcinoma/therapy , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/therapy , Quality of Health Care , Disease Management , Humans , Nasopharyngeal Carcinoma , Neoplasm Metastasis , Neoplasm Staging , Practice Guidelines as Topic , Recurrence
...